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ABSTRACT

The IA-64 architecture is designed with a unique
combination of rich features so that it overcomes the
limitations of traditional architectures and provides
performance scalability for the future.  The IA-64 features
expose new opportunities for the compiler to optimize
applications.  We have incorporated into the Intel IA-64
compiler the key technology necessary to exploit these
new optimization opportunities and to boost the
performance of applications on the IA-64 hardware.  In
this paper, we provide an overview of the Intel IA-64
compiler, discuss and illustrate several optimization
techniques, and explain how these optimizations help
harness the power of IA-64 for higher application
performance.

INTRODUCTION
The IA-64 architecture has a rich set of features including
control and data speculation, predication, large register
files, and an advanced branch architecture
[7, 13].  These features allow the compiler to optimize
applications in new ways.  To this end, the Intel IA-64
compiler incorporates the key technology necessary to
exploit new optimization opportunities and to boost the
performance of applications on IA-64 systems.

The Intel IA-64 compiler targets three main goals while
compiling an application: i) to minimize the overhead of
memory accesses, ii) to minimize the overhead of
branches, and iii) to maximize instruction-level parallelism.
The compilation techniques in the compiler take
advantage of the IA-64 architectural features that are

expressly designed to alleviate these very overheads.  For
instance, memory operations are eliminated by effectively
using the large register file.  Optimizations use rotating
registers to reduce the overhead of software register
renaming in loops.  Predication is used in many situations,
such as removing hard-to-predict branches and
implementing an efficient prefetching policy.  The compiler
uses control and data speculation to eliminate redundant
loads, stores, and computations.

In the first section of this paper, we present the high-level
software architecture of the Intel IA-64 compiler.  We then
describe profile-guided and interprocedural optimizations,
respectively.  Memory disambiguation, a key analysis
technique that enables several optimizations, is then
discussed.  We follow this with a description of memory
optimizations.  The design provisions for supporting
parallelism at both coarse and fine granularity are
discussed next followed by a section on scalar
optimizations, which are aimed at eliminating redundant
computations and expressions.  Finally, we briefly
describe code generation and scheduling techniques in
the compiler.

THE ARCHITECTURE OF THE INTEL
IA-64 COMPILER
The software architecture of the Intel IA-64 compiler is
shown in Figure 1.  The compiler incorporates i) state-of-
the-art optimization techniques known in the compiler
community, ii) optimization techniques that are extended
to include the resources and features in the IA-64, and iii)
new optimization techniques designed to fully leverage
the IA-64 features for higher application performance.
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Many of these techniques are described in subsequent
sections of this paper.

The compiler has a common intermediate representation
for C*, C++*, and FORTRAN90*, so that a majority of the
optimization techniques are applicable irrespective of the
source language (although certain optimization techniques
take advantage of the special aspects of the source
language).

Information about the program execution behavior, profile
information, can be very useful in optimizing programs.
The components in the Intel IA-64 compiler are designed
to be aware of profile information [22], so that the
compiler can select and tune optimizations for the target
application when run-time profile information is available.
Interprocedural analysis and optimization [16] have
proven to be effective in optimizing applications by
exposing opportunities across procedure call boundaries.

The optimizations in the Intel IA-64 compiler can be
grouped into high-level optimizations including memory
optimization, and parallelization and vectorization; scalar
optimizations; and scheduling and code generation,
which together achieve the three optimization goals
mentioned in the introduction.

These high-level optimizations include loop-based and
region-based control and data transformations to i)
improve memory access locality, ii) expose coarse grain
parallelism, iii) vectorize, and iv) expose higher instruction-
level parallelism.  The high-level optimization techniques
are typically applied to program structures at a higher level
of abstraction than those in many other optimizations.
Therefore, the Intel IA-64 compiler elevates the common
intermediate language while applying high-level
optimizations, and it represents loop structures and array
subscripts explicitly.  This facilitates efficient access and
update of program structures.

Some of the high-level optimizations in the Intel IA-64
compiler are linear loop transformations [17, 18], loop
fusion, loop tiling, and loop distribution [16], which can
improve the cache locality of array references.  Loop
unroll and jam [14] and loop unrolling exploit the large
register file to eliminate redundant references to array
elements and to expose more parallelism to the scheduler
and code generator.  Scalar replacement of memory
references [14, 15] is a technique to replace memory
references by compiler-generated temporary scalar
variables, which are eventually mapped to registers.
Finally, the compiler also inserts the appropriate type of
prefetches [7, 19, 20] for data references so as to overlap
the memory access latency with computation.  These
transformations are described in detail in later sections of
this paper.

A primary objective of scalar optimizations is to minimize
the number of computations and the number of references
to memory.  Scalar optimizations achieve this objective by
a natural extension to a well known optimization, called
partial redundancy elimination (PRE) [1,2,11], which
minimizes the number of times an expression is evaluated.
We have extended the PRE of the IA-64 compiler to
eliminate both redundant computations and redundant
loads of the same or known values.  Moreover, the
extended PRE uses control and data speculation to
increase the number of loads that can be eliminated.  The
counterpart of PRE, called partial dead store elimination
(PDSE), is used to remove redundant stores to memory.
PDSE moves stores downward in the program’s flow in
order to expose and eliminate stores that have the same
value.

Scheduling and code generation make effective use of
predication, speculation, and rotating registers by if-
conversion, global code scheduling, software pipelining,
and rotating register allocation.

Optimizations in the IA-64 compiler are supported by
state-of-the-art analysis techniques. Memory
disambiguation determines whether two memory
references potentially access the same memory location.
This information is critical in hiding memory latency,
because knowing that a store does not interfere with a
later load is essential to scheduling memory references
earlier.  We also use data reuse and exact array data
dependence information to guide certain optimizations.

Profiler

C++
Front End

Interprocedural Analysis and
Optimizations

Memory Optimizations,
Parallelization and Vectorization

Global Scalar Optimizations

Predication, Scheduling, Register
Allocation and Code Generation

FORTRAN 90
Front End
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Figure 1: Organization of the Intel IA-64 compiler

PROFILE-GUIDED OPTIMIZATIONS
The compiler may be able to take the fullest advantage of
the IA-64 architecture when accurate information about
the program execution behavior, called profile
information, is available.  Profile information consists of a
frequency for each basic block and a probability for each
branch in the program.

The Intel IA-64 compiler gathers profile information about
the specified program and annotates the intermediate
language for the program with this information.  The
compiler supports two modes for determining profile
information: static and dynamic.  Static profiling, as the
name suggests, is collected by the compiler without any
trial runs of the program.  The compiler uses a collection of
heuristics to estimate the frequencies and probabilities,
based on knowledge of “typical” program characteristics.
Static information is necessarily approximate because it
must be general enough to work with all programs.  The
compiler uses static profiling information whenever the
optimizer is active, unless the developer selects dynamic
profiling.

Instrumented compilation
prof_gen

Instrumented execution

Feedback compilation

instrumented
code

dynamic
information  files

exe + merged dynamic
information  files

Figure 2: Steps in dynamic profile-guided compilation

Dynamic profiling information, or profile feedback, is
gathered in a three-step process as shown in Figure 2.
Instrumented compilation is the first step, where the
application developer compiles all or part of the
application with the prof_gen option, which produces
executable code instrumented to collect profile
information.  The developer then runs the instrumented
code one or more times with “typical” input sets to gather
execution profiles.  Finally, the developer compiles the
application again, this time using the prof_use option,
which combines the gathered profiles and annotates the
internal representation of the program with the observed
frequencies and probabilities.  Many optimizations then
read the information and use it to guide their behavior.
The Intel IA-64 compiler uses profile information to guide
several optimizations:

1. The compiler uses profile information to integrate
procedures that are most frequently executed into
their call sites, thereby providing the benefits of larger
program scope while minimizing code growth.

2. Profile information is also used to guide the layout of
procedures and blocks within procedures to reduce
instruction cache and TLB misses.

3. Finally, the compiler uses profile information to make
the best use of machine instruction width and
speculation features.  By knowing the program’s
execution behavior at scheduling time, the instruction
scheduler is capable of selecting the right candidates
for speculation.

INTERPROCEDURAL ANALYSIS AND
OPTIMIZATION
IA-64’s Explicitly Parallel Instruction Computing (EPIC)
architecture makes it possible to execute a large number of
instructions in a single clock cycle.  Therefore, scheduling
to fill instruction words is of vital importance to the
compiler.  As with other processors, effective use of
instruction caches and branch prediction are also
important.  Traditionally, compilers have operated on one
procedure of the program at a time.  However, such
intraprocedural analysis and optimization is no longer
sufficient to fully exploit IA-64’s architectural features.
The interprocedural optimizer in the Intel IA-64 compiler is
profile-guided and multifile capable, so that it can
efficiently provide analysis and optimization for very large
regions of application code.

The Intel IA-64 compiler provides extensive support for
interprocedural analysis and optimization.  One set of key
features provided by the compiler is for points-to analysis,
mod/ref analysis, side effect propagation, and constant
propagation.  The optimizer and scheduler for the IA-64
compiler may need to move instructions over large regions
in order to fill scheduling slots.  In order to move
operations over large regions, the compiler frequently
requires knowledge of memory references within the
region.  Points-to analysis aids this process by accurately
determining which memory locations may be referenced by
a memory reference.  Figure 3 illustrates this with three
memory references.  If the store to an address in r37 is
known not to store to the same object as the object
pointed to by r33, then the second load may be
eliminated.  Furthermore, because of IA-64’s data
speculation feature, it may be possible to eliminate the
load even if the accesses might infrequently conflict.
Similarly, moving memory references across function calls
requires knowledge of what is modified or referenced by
the function call.  This is provided by mod/ref analysis.
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Analysis and optimization for IA-64 also expose the need
for larger program scope for the IA-64 compared to
traditional optimizers.  To give the optimizer and code
generator larger scope, the interprocedural optimizer
provides several forms of procedure integration: inlining,
cloning, and partial inlining.  Inlining replaces a call site by
the body of the function that would be invoked, and it
provides the fullest opportunity for optimization, albeit
with potentially large increases in code size.  Cloning and
partial inlining are used to specialize functions to
particular call sites, thereby providing many of the
benefits of inlining while not increasing code size
significantly.

ld4     r32=[r33]
…
st4     [r37]=r34
…
ld4      r35=[r33]

Figure 3: An example of a situation requiring point-to
analysis information

The compiler attempts to produce the best performance
without increasing code size, as large code size can cause
poor use of instruction cache and TLBs.  In order to
reduce the impact of code size, while retaining as much
optimization as possible, the compiler uses profile
information and targets procedure integration to only
those sites where it is most effective.  Moreover, profile
guidance with knowledge of the function call graph is
used to lay out functions in an order that minimizes
dynamic code size, which is especially important for TLB
efficiency.

Memory Disambiguation
The effectiveness and legality of many compiler
optimizations rely on the compiler’s ability to accurately
disambiguate memory references.  For example, the
compiler can eliminate a large number of loads and stores
with accurate memory disambiguation.  Accurate
information about memory independence can help exploit
more instruction-level parallelism.  The code scheduler
requires accurate memory disambiguation to aggressively
reorder loads and stores.  The legality and effectiveness of
loop transformations rely on the availability of accurate
and detailed data-dependence information.  The remainder
of this section illustrates the different kinds of analyses
provided in the Intel IA-64 compiler for memory
disambiguation.

The simplest disambiguation cases are direct scalar or
structure references.  Figure 4 shows a pair of direct

structure references.  The compiler may disambiguate
these two memory references either by determining that a
and b are different memory objects or that field1  and field2
are non-overlapping fields.

a.field1 = ..

.. = b.field2

Figure 4:  Disambiguation of direct structure references

Figure 5 shows a pair of indirect references.  In general, in
order to disambiguate this pair of memory references, the
compiler must perform points-to analysis [12], which
determines the set of memory objects that each pointer
could possibly point to.  Because the pointer p or q could
be a global variable or a function parameter, the points-to
analysis performed by the Intel IA-64 compiler is
interprocedural.  In some cases, two indirect references
can be disambiguated based on the pointer types.  For
example, in an ANSI C* conforming program, a pointer to a
float and a pointer to an int cannot point to the same
memory object.

*p = ..

.. = *q

Figure 5:  Disambiguation of indirect references

Various other language rules and simple information are
useful in providing disambiguation information, even
when the more expensive analyses are turned off.  For
example, parameters in programs that conform to the
FORTRAN* standard are independent of each other and
of common block elements.  Therefore, an indirect
reference cannot access the same location as a direct
access to a variable that has not had its address taken.

do i= 0, n
     a(i) = a(i-1) + a(i-2);
enddo

Figure 6:  Disambiguation of array references

Figure 6 shows an example loop with loop-carried array
dependencies.  The value written to a(i) in one iteration is
read as a(i-1) one iteration later, and as a(i-2) two iterations
later.  The Intel IA-64 compiler performs array data-
dependence analysis using a series of dependence tests,
and it determines accurate dependence direction and
distance information.
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Function calls can inhibit optimization.  Figure 7 shows an
example where a function call may inhibit dead store
elimination.  If the function foo() reads *p, then the first
store to *p is not dead.  Interprocedural mod/ref
information [10] is used to determine the set of memory
locations written/read as a result of a function call.

*p = ..

foo();

*p = ..

Figure 7:  Disambiguation of a memory reference and a
function call

MEMORY OPTIMIZATIONS
Processor speed has been increasing much faster than
memory speed over the past several generations of
processor families.  This phenomenon is true for the
IA-64 processor family as well.  Indeed, the speed
differential is expected to be even larger for the IA-64
processors, since IA-64 is a high-performance
architecture.  As a result, the compiler must be very
aggressive in memory optimizations in order to bridge the
gap.  The Intel IA-64 compiler applies loop-based and
region-based control and data transformations in order to
i) improve data access behavior with memory
optimizations, ii) expose coarse grain parallelism, iii)
vectorize, and iv) expose higher instruction-level
parallelism.  In the compiler, we implemented numerous
well known and new transformations, and more
importantly, we combined and tuned these
transformations in special ways so as to exploit the IA-64
features for higher application performance.

In this section, we illustrate a chosen few memory
optimization techniques in the compiler, and we explain
how these transformations help harness the power of the
IA-64 processor implementations for higher application
performance.  Memory optimization techniques in the Intel
IA-64 compiler include, but are not limited to, i) cache
optimizations, ii) elimination of loads and stores, and iii)
data prefetching.  All these transformations are supported
by exact data dependence and temporal and spatial data
reuse analyses algorithms.  The compiler also applies
several other well known optimization techniques such as
secondary induction variable elimination, constant
propagation, copy propagation, and dead code
elimination.

Cache Optimizations
Caches are an important hardware means to bridge the gap
between processor and memory access speeds.  However,
programs, as originally written, may not effectively utilize
available cache.  Hence, we have implemented several loop
transformations to improve the locality of data reference in
applications.  With improved locality of data reference, the
majority of data references will be to higher and faster
levels of memory hierarchy, so that data references incur
much smaller overheads. The linear loop transformations,
loop fusion, loop distribution, and loop block-unroll-
and-jam are some of the transformations implemented in
the compiler.

do i = 1, 1000
  do j = 1, 1000
      c(j) = c(j) + a(i, j)  *  b(j)
  enddo
enddo

do j = 1, 1000
  do i = 1, 1000
      c(j) = c(j) + a(i, j)  *  b(j)
  enddo
enddo

Figure 8: An example of a linear loop transformation

Linear Loop Transformations
Linear loop transformations are compound
transformations representing sequences of loop reversal,
loop  interchange, loop skew, and loop scaling [17,18].
Loop reversal reverses the execution order of loop
iterations, whereas loop interchange interchanges the
order of loop levels in a nested loop.  Loop skew modifies
the shape of the loop iteration space by a compiler-
determined skew factor.  Loop scaling modifies a loop to
have non-unit strides.  As a combined effect, linear loop
transformations can dramatically improve memory access
locality.  They can also improve the effectiveness of other
optimizations, such as scalar replacement, invariant code
motion, and software pipelining.  For example, the loop
interchange in Figure 8 makes references to arrays b and c
both inner loop invariants, besides improving the access
behavior of array a.

Loop Fusion
Loop fusion combines adjacent conforming nested loops
into a single nested loop [16].  Loop fusion is effective in
improving cache performance, since it combines the cache
context of multiple loops into a single new loop. Thus,
data reuse across nested loops is within the same new
nested loop.  It also increases opportunities for reducing
the overhead of array references by replacing them with
references to compiler-generated scalar variables.  Loop
fusion also improves the effectiveness of data prefetching.
Loop fusion in the Intel IA-64 compiler is more aggressive
than that in compilers for IA-32 or RISC processors, for
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example, since loop fusion in the IA-64 takes advantage of
a large number of available registers.  In the loop on the
right-hand side of Figure 9, cache locality is improved
because the accesses to array a are reused within the same
loop.  Further, it enables the compiler to replace references
to arrays a and d with references to compiler-generated
scalar variables.

do i = 1, 1000
    a(i) = x
enddo
do i = 1, 1000
    c(i) = a(i-1) + d(i-1)
    d(i) = c(i)
enddo

do i = 1, 1000
    a(i) = x
    c(i) = a(i-1) + d(i-1)
    d(i) = c(i)
enddo

Figure 9: An example of a loop fusion

Loop Block-Unroll-Jam

Loop unroll and jam unrolls the outer loops and fuses the
unrolled copies together [14].  As a result, several outer
loop iterations are merged into a single iteration in the new
loop nest.  For example, the i loop in the two-dimensional
loop on the left-hand side of Figure 10 is unrolled by a
factor of two.  The two resulting loop nests (one for the
even values of i and one for the odd values of  i) are
jammed together to obtain the loop on the right-hand side
of Figure 10.

do i = 1, 2*n
    do j = 1, 2*n
        b(j, i) = a(j, i-1) + a(j, i) + a(j, i+1)

    enddo
enddo

do i = 1, 2*n, 2
    do j = 1, 2*n
        b(j, i) = a(j, i-1) + a(j, i) + a(j, i+1)
        b(j, i+1) = a(j, i) + a(j, i+1) + a(j, i+2)
    enddo
enddo

Figure 10: An example of a loop unroll and jam

When all loops in a loop nest are blocked, loop blocking
or tiling transforms an n-dimensional loop nest into a 2n-
dimensional loop nest, where the inner n-loops together
scan the iterations in a block or tile of the original iteration
space.  Loop blocking is key to improving the cache
performance of libraries and applications that manipulate
large matrices of data items.

The design of the Intel IA-64 compiler unifies loop
blocking, unroll and jam, and inner loop unrolling.

Traditionally, compilers implement loop blocking, loop
unroll and jam, and (inner) loop unrolling separately.  In
the process, such compilers use more than one cost model
and multiple code-generation mechanisms.  Whereas in
fact, the three transformations are closely related.  Loop
blocking is a unification of strip-mining and interchange
transformations.  Outer loop unrolling and jamming can be
viewed as blocking of the outer loops with block sizes
equal to corresponding unroll factors, followed by
unrolling the local iteration spaces corresponding to a
block or a tile.  Inner loop unrolling is a special case of
blocking, where only the innermost loop is strip-mined and
unrolled.  All of the three transformations focus on
bringing as many  “related” array accesses and associated
computations as possible into inner loops.  In the process
of doing so the outer loop unroll and jam and the inner
loop unroll increase the size of the loop body.

Loop Distribution
The effect of loop distribution on loop structure is the
opposite of loop fusion [16].  Loop distribution splits a
single nested loop into multiple adjacent nested loops that
have a similar loop structure.  The computation and array
accesses in the original loop are distributed across newly
formed nested loops.  Besides enabling other
transformations, loop distribution spreads the potentially
large cache context of the original loop into different new
loops, so that the new loops have manageable cache
contexts and higher cache hit rates.

LOAD AND STORE ELIMINATION
The IA-64 architecture has a much larger register file than
traditional architectures. The IA-64 compiler takes
advantage of this to eliminate loads and stores by
effectively registering the memory references.  In this
section, we describe two optimization techniques that
eliminate loads and stores: scalar replacement and
register blocking.

Scalar Replacement
Scalar replacement [14,15] is a technique to replace
memory references with compiler-generated temporary
scalar variables, which are eventually mapped to registers.
Most back-end optimization techniques map array
references to registers when there is no loop-carried data
dependence.  However, the back-end optimizations do not
have accurate dependence information to replace memory
references with loop-carried dependence by scalar
variables. Scalar replacement, as implemented in the Intel
IA-64 compiler, also replaces loop invariant memory
references with scalar variables defined at the appropriate
levels of loop nesting.
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For an example of scalar replacement of memory
references, consider the loop on the left-hand side of
Figure 11.  In the transformed loop, all the read references
to array a are replaced by compiler-inserted temporary
scalar variables.  In particular, note the replacement of
loop-carried data reuse of a(i-1), which is replaced by a
scalar variable saved from a previous iteration.  In other
words, the technique is capable of scalar replacing for
loop independent as well as for loop-carried (either by an
input or flow dependence) data reuses.

do  i=2,n
    a(i)=a(i-1)* ...
    … =a(i)-a(i-1)
enddo

t1 = a(1)
do i=2,n
    t2  = t1 * …
    a(i) = t2
                 = t2 – t1
     t1 = t2

enddo

Figure 11: An example of a scalar variable replacement

The IA-64 architecture provides rotating registers , which
are rotated one register position each time a special loop
branch instruction is executed.  This hardware feature
enables the compiler to map the compiler-inserted scalars
directly onto the rotating registers.  In particular,
assignment statements of the form t1=t2 in the example
above do not have any computational overhead at all
because the assignment is implicitly affected by the
rotation of registers.

Scalar replacement of memory references uses the
direction vectors and dependence types in the data
dependence graph to determine the memory references
that should be replaced by scalars and to determine how
to perform the book-keeping required for the replacement.
The compiler examines the data dependence graph for
each loop and partitions the memory references based on
whether the corresponding data dependencies are input,
flow, or output dependencies.  Memory references within
each group are sorted by dependence distance and
topological order.  Memory references with loop-
independent and loop-carried flow dependence are
processed first, followed by memory references with loop-
carried output dependence.

Register Blocking
Register blocking turns loop-carried data reuse into loop-
independent data reuse.  Register blocking transforms a
loop into a new loop where the loop body contains
iterations from several adjacent original loop iterations.
Register blocking is similar to loop blocking or tiling, with
relatively smaller tile sizes, followed by an unrolling of the
iterations in the tile.  Register blocking is demonstrated in
the example in Figure 12.  Register blocking takes

advantage of the large register file to map the references to
many of the common array elements in adjacent loop
iterations onto registers.

do j=1,2*m                           do j=1,2*m,2
    do i=1,2*n                                        do i=1,2*n,2
      a(i,j) = a(i-1,j) + a(i-1,j-1)                 a(i,j) = a(i-1,j)+a(i-1,j-1)
   enddo            a(i+1,j) = a(i,j)+a(i,j-1)
   enddo                                a(i,j+1) = a(i-1,j+1)+a(i-1,j)
enddo                                               a(i+1,j+1)= a(i,j+1)+a(i,j)
                                                enddo
                                             enddo

Figure 12: An example of register blocking

The original loop on the left-hand side of this figure has
two distinct array read references in every iteration. The
register blocked loop on the right-hand side of the figure
has only six distinct array read references for every four
iterations in the original loop.  Note that two of the six
references are loop independent reuses.  In the Intel
IA-64 compiler design, register blocking is followed by
scalar replacement of memory references, since register
blocking exposes new opportunities for scalar replacement
of memory references.

DATA PREFETCHING
Data prefetching is an effective technique to hide memory
access latency.  It works by overlapping time to access a
memory location with time to compute as well as time to
access other memory locations [7, 19, 20].  Data
prefetching inserts prefetch instructions for selected data
references at carefully chosen points in the program, so
that referenced data items are moved as close to the
processor as possible before the data items are actually
used.  Note that the data prefetch instructions do not
normally block the instruction stream and do not raise
exceptions.  Prefetching is complementary to techniques
that optimize memory accesses such as loop
transformations, scalar replacement of memory references,
and other locality optimizations.  The data prefetching
algorithm implemented in the Intel IA-64 compiler makes
use of data prefetch instructions and other data
prefetching support features available on the IA-64.

The cost incurred while prefetching data arises from the
added overhead of executing prefetch instructions as well
as instructions that generate the addresses for prefetched
data items.  The prefetch instructions will occupy memory
slots, thereby increasing resource usage.  Compute-
intensive applications normally have sufficient free
memory slots.  However, the benefits from prefetching
have to be weighed against the increase in resource usage
in memory-intensive applications.  One must avoid
prefetching for data already in the cache, because such
prefetches result in an overhead and are of no benefit.
Data prefetches should be issued at the right time: they
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should be sufficiently early so that the prefetched data
item is available in cache before its use; they should be
sufficiently late so that the prefetched data item is not
evicted from the cache before its use.  Prefetch distance
denotes how far ahead a prefetch is issued for an array
reference.  This distance is estimated based on the
memory latency, the resource requirements in the loop,
and data-dependence information.

We implemented a data prefetching technique that utilizes
data-locality analysis to selectively prefetch only those
data references that are likely to suffer cache misses.  For
example, if a data reference within a loop exhibits spatial
locality by accessing locations that fall within the same
cache line, then only the first access to the cache line will
incur a miss.  Thus this reference can be selectively
prefetched under a conditional of the form (i mod L) == 0,
where i is the loop index and L denotes the cache line size.
When multiple references access the same cache line, then
only the leading reference needs to be prefetched.
Similarly, if a data reference exhibits temporal locality,
then only the first access must be prefetched.

do j = 1,n
   do i = 1,m
       a(i,j) = a(i,j) + b(0,i) + b(0,i+1)

enddo
enddo

do j = 1,n
   do i = 1,m
      a(i,j) = a(i,j) + b(0,i) + b(0,i+1)
      if (mod(i,8) == 0)
           call prefetch(a(i+k, j))
      if (j == 1)
           call prefetch(b(0, i+k+1))

enddo
enddo

Figure 13: An example of data prefetching

In the example in Figure 13, the compiler inserts prefetches
for arrays a and b.  The references to array a have spatial
locality, whereas the references to array b have temporal
locality with respect to the j loop iterations.  Note that the
calls to the prefetch intrinsic function finally map to the
prefetch instructions in IA-64. In this example, k is the
prefetch distance computed by the compiler.

The conditional statements used to control the data
prefetching policy can be removed by loop unrolling,
strip-mining, and peeling.  However, this may result in
code expansion, which can cause increased instruction
cache misses.  The predication support in IA-64 provides
an efficient way of adding prefetch instructions.  The
conditionals within the loop are converted to predicates
through if-conversion, thus changing control dependency
into data dependency.  The large number of registers
available in IA-64 enables prefetch addresses to be stored

in registers obviating the need for register spill and fill
within loops.

The IA-64 architecture provides support for memory
access hints that enable the compiler to orchestrate data
movement between memory hierarchies efficiently [7].
Data can be prefetched into different levels of cache
depending on the access patterns.  For example, if a data
reference does not exhibit any kind of reuse, then it can be
prefetched using a special nta hint to reduce cache
pollution.  This kind of architectural support for data
movement enables the compiler to perform better data
reuse analysis across loop bodies so that unnecessary
prefetches are avoided.

PARALLELIZATION AND
VECTORIZATION
Support for OpenMP*, automatic parallelization,
vectorization, and load-pair optimization are all included in
the design of the IA-64 compiler.  The design takes
advantage of native support for parallelism on the IA-64,
which includes semaphore instructions such as exchange,
compare-and-exchange, and fetch-and-add, in addition to
the fused multiply accumulate instruction (fma).  The
support for parallelism on IA-64 also includes SIMD, i.e.,
parallel arithmetic operations on 1, 2, and 4 bytes of data.
In order to exploit the fine grain locality of data access in
applications, IA-64 provides load instructions that
simultaneously load a pair of double floating-point
precision data items.

Parallelization
OpenMP is an industry standard to specify shared
memory parallelism.  It consists of a set of compiler
directives, library routines, and environment variables that
provide a model for parallel programming aimed at
portability across shared memory systems from different
vendors.

An alternative approach to parallelization is to let the
compiler automatically detect parallelism and generate
parallel code.  The Intel IA-64 compiler has accurate data-
dependence information to determine loops that can be
parallelized.

Vectorization
The IA-64 floating-point SIMD operations can further
improve the performance of floating-point applications.
IA-64 provides the capability of doing multiple floating-
point operations at the same time.  The traditional loop
vectorization techniques can be used to exploit this
feature.
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do j = 1, 1000
  y(j) = y(j) + a*x(j)
enddo

do j = 1, 1000, 2
  t1,t2 = ldfpd(x(j),x(j+1))
  t3,t4 = ldfpd(y(j),y(j+1))
  y(j) = t3 + a*t1
  y(j+1) = t4 + a*t2
enddo

Figure 14: An example of the use of load-pairs

Load-Pairs
IA-64 provides high bandwidth instructions that load a
pair of floating-point numbers at a time [7].  Such load-pair
instructions take a single memory issue slot, thus possibly
reducing the initiation interval of the software pipelined
loop.  Data alignment is required to make this work.
Special instructions in IA-64 can be used to avoid
possible code expansion.  For example, the loop in Figure
14 has three memory operations per iteration.  By using
load-pair operations, the number of memory references can
be reduced to two per iteration.

SCALAR OPTIMIZATIONS
A primary objective of scalar optimizations is to minimize
the number of computations and the number of references
to memory.  Partial redundancy elimination (PRE) [1, 2, 11]
is a well known scalar optimization technique that
subsumes global common subexpression elimination (CSE)
and loop invariant code motion.  CSE removes expressions
that are always redundant (redundant on all control flow
paths).  PRE goes beyond CSE by attempting to remove
redundancies that occur only on some control flow paths.
In this paper, we highlight the use of scalar optimizations
to eliminate loads and stores.

Traditional PRE
An expression at program point p in the program control
flow graph (CFG) is fully redundant if the same expression
is already available.  An expression e is said to be
available at a point p if along every control flow path from
the program entry to p there is an instance of e that is not
subsequently killed by a redefinition of its operands.
Figure 15 shows an example of a fully redundant
expression and its elimination by CSE.  The redundancy is
removed by saving the value of the redundant expression
in a temporary variable and then later reusing that value
instead of reevaluating the expression.

c = a + b d = a + b

e = a + b

t1 = a + b
    c = t1

t1 = a + b
    d = t1

    e = t1

a) b)

Figure 15: (a) expression a + b is fully available, (b)
elimination of common subexpression

An expression e is partially available at a point p if there is
an instance of e along only some of the control flow paths
from the program entry to p.  Figure 16 shows an example
of a partially redundant expression and PRE.  The partial
redundancy is removed by inserting a copy of the
redundant expression on the control flow paths where it is
not available, making it fully redundant.

c = a + b

e = a + b

t1 = a + b
    c = t1

t1 = a + b

    e = t1

a) b)

Figure 16: (a)  expression a + b is partially available (b)
elimination of partial redundancy

PRE can move the loop invariant to outside the loop as
shown in Figure 17.  The expression *q is available on the
loop back-edge, but not on entry to the loop.  After
inserting t2 = *q in the loop preheader, *q is fully
available and can be removed from the loop.

     t 2  =  * q
 a ( i )  =  a ( i )  +  t 2  a ( i )  =  a ( i )  +  t 2

t 2  =  * q

a ) b )

Figure 17:  Example of loop-invariant code motion
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Note, however, that the optimizer must be careful not to
insert a copy of an expression at a point that would cause
the expression to be evaluated when it was not evaluated
in the original source code.  Figure 18 shows such an
example.  The insertion of an expression e at a program
point p is said to be down-safe  if along every control flow
path from p to the program exit there is an instance of e
such that the inserted expression is available at each later
instance.  In Figure 18, the insertion of t1 = *q is not
down-safe.  There are two aspects to down-safety.  The
first is that an unsafe insertion may create an incorrect
program.  For example, in Figure 18, the expression *q is
executed before checking if q is a null pointer.  Second, an
unsafe insertion reduces the number of instructions along
one path at the expense of another path.  In Figure 18, the
redundancy is eliminated for the left-most path, but an
extra instruction, t1 = *q, is executed on the right-most
path.

a) b)

yn

   c = *q (q == Null) ?

e = *q

d = a + b

yn

  t1 = *q
(q == Null) ?

  e = t1

d = a + b

   t1 = *q
   c = t1

Figure 18: (a) expression *q is partially available, (b)
violation of down-safety

Extended PRE for IA-64
The standard PRE algorithm removes all the redundancies
possible with safe insertions.  We have extended PRE to
use control speculation to remove redundancies on one
control flow path, perhaps at the expense of another, less
important control flow path.  In the example in Figure 18,
assume that the left-most control flow path is executed
much more frequently than the right-most path.  If the
redundancy on the left-most path could be removed
without producing an incorrect program, overall
performance would be improved even though an extra
instruction is executed on the right-most path.

a) b)

yn

   c = *q (q == Null) ?

e = *q

d = a + b

yn

   t2 = q
ld t1 = [t2]
   c = t1

  t3 = q
ld.s t1 = [t3]
(q == Null) ?

chk.s t1
  e = t1

d = a + b

recovery
block

Figure 19:  Redundancy elimination using control
speculation

Figure 19 shows how the redundancy in Figure 18 could
be removed using the IA-64 support for control
speculation.  The insertion of *q is done using a
speculative load, and a check instruction is added in place
of the redundant load.  Executing the check is preferable to
executing the redundant load because the check does not
use memory system resources and because the latency of
the load is hidden by executing it earlier.  Also, elimination
of the redundant load may expose further opportunities for
redundancy elimination in the instructions that depend on
the load.

Removal of redundant loads can sometimes be inhibited
by intervening stores.  In Figure 20 (a), the loop-invariant
load *p cannot be removed unless the compiler can prove
that the store *q does not access the same memory
location.  The process of determining whether or not two
memory references access the same location is called
memory disambiguation and was described earlier in this
paper.

If the compiler can determine that there is an unknown, but
small probability that *p and *q access the same memory
location, the loop invariant load and the add that depends
on it can be removed using the IA-64 support for data
speculation as shown in Figure 20 (b).  The insertion of *p
in the preheader is done using an advanced load, and a
check instruction is added in place of the original
redundant load.  If the store *q accesses the same memory
location as the load *p, a branch to a recovery code block
will be taken at the check instruction.  The recovery block
contains code to reload *p and re-execute t4=t2 + t3.  If
the store *q and load *p access different memory
locations, then only the check is executed instead of the
redundant load and add.
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   *q = t1
   t2 = *p
t4 = t2 + t3

 *q = t1
chk.a t2

   t5 = p
ld.a t2 = [t5]
t4 = t2 + t3

a) b)

recovery
block

Figure 20: Removal of loop-invariant load using data
speculation

Partial Dead Store Elimination
In contrast to PRE which removes redundant loads, Partial
Dead Store Elimination (PDSE) removes redundant stores
in the program. Figure 21 shows an example of PDSE.  The
partial redundancy is removed by inserting a copy of the
partially dead store into the control flow paths where it is
not dead, making it fully redundant.

*p = c

*p = c

a)

*p = t1

b )

*p = t1

t1 = c

Figure 21: (a) store *p is partially dead, (b) elimination of
partially dead store

As with PRE, the compiler must be careful when inserting
stores to avoid executing a store when it should not be
executed.  Figure 22 shows an example of an incorrect
insertion of a store.  In Figure 22b, the store
*p = t1 on the right is executed even if the path containing
d=a+b is executed.  In the original program in Figure 22a,
no store to *p is executed when the path containing
d=a+b is executed.

*p = c

*p = c

a)

*p = t1

b)

    *p = t1

t1 = c
d = a + b d = a + b

Figure 22:  Example of incorrect insertion of a store

Figure 23 shows how the redundancy in Figure 22 could
be removed using a predicated store.  In Figure 23b, the
redundancy on the left-most path is removed by inserting
a predicated store.  Instructions are required to set the
predicate p2 to 1 when the store should be executed, and
to 0 when it should not be executed.  In Figure 23b,
suppose that the left-most path is executed much more
frequently than the right-most path.  On the left-most path,
executing p2=1 is preferable to executing the store,
because the p2=1 does not use memory system resources.
In some cases, an appropriate instruction to set p2 may
already exist as a result of the if-conversion or another
optimization, thereby reducing the cost of predicating the
store.

*p = c

*p = c

a)

*p = t1

b)

(p2) *p = t1

t1 = c
p2 = 1

d = a + b
p2 = 0
d = a + b

Figure 23:  Elimination of partially dead store using
predication

THE  SCHEDULER AND CODE
GENERATOR
The scheduler and code generator in the compiler make
effective use of predication, speculation, and rotating
registers by global code scheduling, software pipelining,
and rotating-register allocation.  In this section, we
provide an overview of predication techniques, software-
pipelining, global code scheduling, and register allocation.

Predication
Branches can decrease application performance by
consuming hardware resources at execution time and by
restricting instruction-level parallelism.  Predication is one
of several features IA-64 provides to improve the



Intel Technology Journal Q4, 1999

An Overview of the Intel IA-64 Compiler 12

efficiency of branches [7].  Predication is the conditional
execution of an instruction that is based on a qualifying
predicate, where the qualifying predicate is a predicate
register whose value determines whether or not the
instruction must execute normally.  If the predicate is true,
the instruction updates the computation state; otherwise,
it generally behaves like a nop.  The execution of most IA-
64 instructions is gated by a qualifying predicate.  The
values of predicate registers can be set with a variety of
compare and test bit instructions.  Predicated execution
avoids branches, and it simplifies compiler optimizations
by converting a control dependence to a data
dependence.

The Intel IA-64 compiler eliminates branches through
predication and thus improves the quality of the code’s
schedule.  The benefits are particularly pronounced for
branches that are hard to predict.  The compiler uses a
transformation called if-conversion, where conditional
execution is replaced with predicated instructions.  For a
simple example, look at the following code sequence:

if (a <b)
    s = s + a
else
    s = s + b

can be rewritten in IA-64 without branches as

cmp.lt p1, p2 = a,b
(p1) s = s + a
(p2) s = s + b

Since instructions from opposite sides of the conditional
are predicated with complementary predicates, they are
guaranteed not to conflict, and the compiler has more
freedom when scheduling to make the best use of
hardware resources.

Predication enables the compiler to perform upward and
downward code motion with the aim of reducing the
dependence height.  This is possible because predicating
an instruction replaces a control dependence with a data
dependence.  If the data dependence is less constraining
than the control dependence, such a transformation may
improve the instruction schedule.  The compiler also uses
predication to efficiently implement software pipelining
discussed in the next section.

Note that predication may increase the critical path length
because of unbalanced dependence heights or over-usage
of particular resources, such as those associated with
memory operations.  The compiler has to weigh this cost
against the profitability of predication by considering

various factors such as the branch misprediction
probabilities, miss cost, and parallelism.

The IA-64 supports special parallel compare instructions
that allow compound expressions using the relational
operators and and or to be computed in a single cycle.
These instructions can be used to reduce the control path
by reducing the total number of branches.  IA-64 also has
the support of multiway branches, where different
predicates can be used to branch to different targets
within an instruction group.

Software Pipelining
Software pipelining [3,4] in the Intel IA-64 compiler
improves the performance of a loop by overlapping the
execution of several iterations.  This improves the
utilization of available hardware resources by increasing
the instruction-level parallelism.  Figure 24 shows several
overlapped loop iterations.

iter 1

iter 2

iter 3

use r1

def r1

def r1

def r1

use r1

use r1

Stage A

Stage B

Stage C

Figure 24:  Pipelined loop iterations

Analogous to hardware pipelining, each iteration is
divided into stages.  In this example, each iteration is
divided into three stages, and up to three iterations are
executed simultaneously.  The number of cycles between
the start of successive iterations in a software-pipelined
loop is called the Initiation Interval (II), and each stage is
II cycles in length.

Software-pipelined loops have three execution phases: the
prolog phase, in which the software pipeline is filled; the
steady-state kernel phase, in which the pipeline is full; and
the epilog phase, in which the pipeline is drained.  In RISC
architectures, these three execution phases are
implemented using three distinct blocks of code as shown
in Figure 25.

In IA-64, rotating predicates [5, 6, 7] are used to control
the execution of the stages during the prolog and epilog
phases, so that only the kernel loop is required.  This
reduces code size.  During the first iteration of the kernel
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loop, stage A of source iteration 1 is enabled.  During
kernel iteration 2, stage A of source iteration 2 and stage B
of source iteration 1 are enabled, and so on.  During the
epilog phase, the hardware support sequentially disables
stages.

In order to illustrate another advantage of IA-64 support
for software-pipelining, consider register r1 defined early
in each iteration and used late in each iteration, as shown
in Figure 24.  When the iterations overlap, the separate
lifetimes also overlap.  The definitions of r1 from iterations
two and three overwrite the value of r1 that is needed by
the first iteration.  In RISC architectures, the kernel loop
must be unrolled three times so that each of the three
overlapped lifetimes can be assigned to different registers
to avoid clobbering of values [4, 6].  In IA-64, on the other
hand, unrolling of the kernel loop is unnecessary because
rotating registers can be used to perform renaming of the
registers, thus reducing the code size [5, 6, 7].

The Intel IA-64 compiler uses a software pipelining
algorithm called modulo scheduling [8].  In modulo
scheduling, a minimum candidate II is computed prior to
scheduling.  This candidate II is the maximum of the
resource-constrained minimum II and the recurrence-
constrained (dependence cycle constrained) minimum II.

prolog

epilog

kernel
 loop

Figure 25: Execution phases in software-pipelined loops:
IA-64 supports kernel only software-pipelined loops

The Intel compiler pipelines both counted loops and while
loops.  Loops with control flow or with early exits are
transformed, using if-conversion, into single block loops
suitable for pipelining.  Outer loops can also be pipelined,
and several optimizations are done to reduce the
recurrence-constrained II.

Global Code Scheduling
The Intel IA-64 compiler contains both a global code
scheduler (GCS) [9] and a fast local code scheduler.  The
GCS  is the primary scheduler, and it schedules code over
acyclic regions of control flow.  The local code scheduler

rearranges code within a basic block and is run after
register allocation to schedule the spill code.

The GCS allows arbitrary acyclic control flow within the
scheduling scope referred to as a scheduling region.
There is no restriction placed on the number of entries into
or exits from the scheduling region.  The GCS also enables
code scheduling across inner loops by abstracting them
away through nesting.  The GCS employs a new path-
based data dependence representation that combines
control flow and data-dependence information to make
data analysis easy and accurate.

Most scheduling techniques find it difficult to make good
decisions on the generation and scheduling of
compensation code.  This problem is addressed by the
GCS using wavefront scheduling and deferred
compensation.  The GCS schedules along all the paths in a
region simultaneously.  The wavefront is a set of blocks
that represents a strongly independent cut set of the
region.  Instructions are only scheduled into blocks on the
wavefront.  The wavefront can be thought of as the
boundary between scheduled and yet to be scheduled
code in the scheduling region.

Control flow in program code can make the task of code
motion difficult and complicated.  In the GCS, tail
duplication is done at the instruction level and is referred
to as P-ready code motion.  An instruction is duplicated
based on a cost and profitability analysis.

Register Allocation
Register allocation refers to the task of assigning the
available registers to variables such that if two variables
have overlapping live ranges, they are assigned separate
registers.  In doing so, the register allocator attempts to
maximally utilize all the available registers.  The large
number of architectural registers in IA-64 enables multiple
computations to be performed without having to
frequently spill and copy intermediate data to memory.
Register allocation can be formulated as a graph coloring
problem where nodes in the graph represent live ranges of
variables and edges represent a temporal overlap of live
ranges.  Nodes sharing an edge must be assigned different
colors  or registers.

When using predication, it is particularly common for
sequences of instructions to be predicated with
complementary predicates.  In such cases, it is possible to
use the same registers for two separate variables, even
when their live ranges seem to overlap.  This is because
the compiler can figure out that only one of the variables
will be updated depending on the predicate values.  For
example, in the code sequence of Figure 26, the same
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register is allocated for both v1 and v2 since p1 and p2 are
complementary predicates.

(p1) v1 = 10
(p2) v2 = 20 ;;
(p1) st4 [v10]= v1
(p2) v11 = v2 + 1 ;;

----à

 (p1) r32 = 10
(p2) r32 = 20 ;;
(p1) st4 [r33]= r32
(p2) r34 = r32 + 1 ;;

Figure 26: An example of register allocation

CONCLUSION
In this paper, we provided an overview of the Intel IA-64
compiler.  We described the organization of the compiler,
as well as the features and functionality of several
optimization techniques.  The compiler applies region and
loop-level control and data transformations, as well as
global optimizations, to programs.  All the optimization
techniques in the compiler are aware of profile information
and effectively use interprocedural analysis information.
The optimizations effectively target three main goals while
compiling an application: i) to minimize the overhead of
memory accesses, ii) to minimize the overhead of
branches, and iii) to maximize instruction-level parallelism.
We described how the optimization techniques in the Intel
IA-64 compiler take advantage of the IA-64 architectural
features for improved application performance.  We
illustrated the techniques with example codes, and we
highlighted the benefits as a result of specific
optimizations.  The Intel IA-64 compiler incorporates all
the infrastructure and technology necessary to leverage
the IA-64 architecture for improved integer and floating-
point performance.
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