
The Making of a Compiler for the Intel® Itanium™ Processor 1

The Making of a Compiler for the Intel® Itanium™ Processor

Carole Dulong, Intel Compiler Lab, Intel Corporation
Priti Shrivastav, Intel Compiler Lab, Intel Corporation

Azita Refah, Intel Compiler Lab, Intel Corporation

Index words: compiler, Intel® Itanium™ processor, SDK, SoftSDV, OSV, ISV

ABSTRACT

Intel has developed an Itanium compiler that compiles
code written in C/C++ or Fortran languages and generates
the assembly instructions for the Itanium™ architecture
on Windows NT* and UNIX* platforms. This paper
describes how the Intel Itanium compiler was designed
and developed in the absence of hardware. The project
started more than five years before we had any hardware,
and the work on simulators presented many challenges.
We discuss three different aspects of the Itanium
compiler: the compiler performance analysis, which
focused on demonstrating the Intel® Itanium™ processor
(ITP) performance on the Spec benchmarks; enabling
Operating System Vendors (OSVs) such as IBM to port
their Operating System (OS) to the Itanium architecture;
and Independent Software Vendor (ISV) enabling work,
which focused on enabling ISVs to port real applications
on the Itanium architecture.

For each area we describe the methodology used in the
absence of hardware, the results achieved, and the lessons
learned.

GOALS OF THE INTEL ITANIUM
COMPILER
The project goals for the Intel Itanium compiler have
evolved over time. Initially the goal was to create a
reference compiler, which would demonstrate the

∗ Other names and brands may be claimed as the property
of others.
1 Intel is a trademark or registered trademark of Intel
Corporation or its subsidiaries in the United States and
other countries.
 Itanium is a trademark or registered trademark of Intel
Corporation or its subsidiaries in the United States and
other countries.

Itanium processor performance on a few key benchmarks.
A few years into the project, the strategy was changed,
and we decided to develop a robust product compiler that
would not only demonstrate performance, but also enable
Independent Software Vendors (ISVs) and Operating
System Vendors (OSVs) to port their applications and
Operating Systems (OS) to the new Itanium architecture.
Making the Intel compiler a product would give it
credibility among our other compiler vendors, and it
would create an incentive in the compiler industry to
achieve as high performance as possible on this new
architecture.

We knew from the beginning that many ISVs would not
want to switch vendors, so it was important to incite the
other compiler vendors to expend their resources on the
performance aspect of the Itanium compilers.

Time Line
It was well understood from the beginning of the Itanium
project that compiler technology was a key ingredient of
the project. Therefore, the compiler design was started at
the same time as the architecture definition and the chip
design: i.e., in late 1994.

Key Phases and Milestones
The key phases and milestones for the project were as
follows:

- 1994 – 1997: Design

- 1996 – 1999: Development

- Q4, 1996: Windows NT boots to command prompt
with Intel’s compiler in two months.

- Q3, 1997: First Non-NT OSV Engagement

2∗ Other names and brands may be claimed as the
property of others.

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 2

- Q2, 1999: Monterey64 boots with Intel’s Compiler
on the simulator

- 1999 – 2001: Performance tuning on simulator, then
on hardware

- Q1, 2000: First access to hardware

Software Development Kits (SDKs) were released to
firmware (FW) developers, ISVs, and OSVs very early in
the project:

- Q1, 1996: SDK 0.1 first FW release

- Q4, 1997: SDK 0.3 64 bit analyzer (for ISVs to make
their application 64-bit clean)

- Q2 - Q4 1998: SDK0.4 and SDK 0.5, enabling of OS
and FW development

- Q1, 1999 SDK0.6 release criteria included Intel
assembler and building of NT OS 4.0

- Q3, 1999: SDK1.7 first release with strong emphasis
on applications. Release criteria applications
included 3D Studio Max (C/C+), Games and Nag
F90 (Fortran)

- Q1, 2000 SDK2.0 last simulator-based release

- Q3, 2000 SDK5.0 first HW-based release, enabling
large application vendors such as Ansys, Nastran,
Oracle, SQL, and Mentor Graphics

Tools
When the Itanium compiler and OS development started,
a simulation environment was defined to run programs on
a functional simulator called Gambit. The environment,
called application mode, was used to test the very first
Itanium compiler by providing basic runtime capabilities
including file I/O and memory management. The
compiler was used to get the Windows* and System V
UNIX OSs up and running on the functional simulator.
The OS support was limited to loader, OS kernel, and
basic OS functionality.

A Software Development Vehicle (SDV) was designed to
include OS drivers and a loader to start an OS on the
functional simulator under a debugger. The tool was
named SoftSDV [2]. It was widely used to debug and test
the OS, compilers, and 64-bit applications. A complete
Windows OS and System V UNIX OS along with runtime
support was developed and run on SoftSDV (see Figure
1).

∗ Other names and brands may be claimed as the property
of others.

SoftSDV
(Simulator based Software Development Vehicle)

Win64 or Unix64

Simdb

Gambit

Application BApplication A

Simulator invokes a debugger

Boots an
Operating System

Runs applications

Figure 1: SoftSDV

A performance simulator called Emerald was also
developed. It was run in application mode, on top of
Gambit. For performance analysis of the compiler on
Emerald, we mostly used the SPEC CPU95* benchmarks.
To run these benchmarks on the simulator in less than 24
hours per benchmark, we had to use the lite inputs, a
subset of the reference inputs that was borrowed from
HP. Results from Emerald include cycle count and
micro-architecture statistics such as cache hit rates,
branch mispredict, and instruction distribution. However,
it is important for a compiler to know where events such
as cache misses and branch mispredicts happen in order
to prevent them. A special version of Vtune , called
Vtune++, gathered event information, including the
Instruction Pointer (IP) from the Emerald simulator. It
used the core GUI functions of Vtune, but could provide
information at the bundle level, such as cache misses or
time-based IP sampling

PERFORMANCE ANALYSIS
The compiler performance analysis has several goals:

• Performance projection.

• Guiding and validating the optimization
development. Analysis of compiler-generated code
shows where and what optimizations are needed.
Performance analysis is also important to check if
optimizations are doing what they are supposed to
do, after they have been developed.

• Performance regression testing. Interactions
between different optimizations can be complex, and

 Vtune is a trademark or registered trademark of Intel
Corporation or its subsidiaries in the United States and
other countries.

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 3

regression testing is needed to ensure that
optimizations keep working as the compiler evolves.

The SPEC CPU95 benchmarks were used for
performance analysis and projections. By the end of
1997, the compiler reached the long awaited level of 30
SPECint95*. At that time, the chip design went through
two die diets in a row, and the compiler performance
stayed at the 30 SPECint95 level for more than six
months. New compiler optimizations were making up for
lost silicon performance. Floating-point performance
(shown with squares in the graph) was not affected as
much by the die diets as was integer performance.
However, the compiler team developed a new High-Level
Optimizer (HLO) to take advantage of the Itanium
architecture, but the HLO did not come on line before the
first half of 1999 [1]. Figure 2 shows the performance
improvements over time on SPEC CPU95 with the Intel
Itanium compiler.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Figure 2: SPEC CPU95* performance over time

The chart in Figure 3 shows the difference between
simulator-predicted performance and actual hardware
performance. A negative number means that the
simulator was optimistic and that the hardware did not
perform as fast as the simulator. SPECint95 performance
was predicted to be 13% faster than actual performance.
The difference was partially due to the use of lite inputs
on the simulator, which did not always correlate well with
the reference inputs used on hardware. The other source
of difference was inaccuracies in the simulator.

∗ Other names and brands may be claimed as the property
of others.
 Itanium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

-35%
-30%
-25%
-20%
-15%
-10%

-5%
0%
5%

10%
15%

go

m88ks
im gcc

co
mpress li

ijp
eg

perl

vo
rte

x

Geomean

Figure 3: Simulator accuracy on SPECint95*

Overall, the floating-point performance projection was
more accurate than the integer projection, see Figure 4;
since it came within 3% of the hardware performance.
However, the simulator was very inaccurate on
benchmarks that were memory intensive. The memory
model of the simulator was fairly simplistic and did not
model overlapping requests to memory. We were
fortunate to have two benchmarks grossly
underestimated, and two benchmarks grossly
overestimated. The errors compensated each other and
gave an overall good prediction.

-60%

-40%

-20%

0%

20%

40%

60%

to
m

ca
tv

sw
im

su
2c

or

hy
dr

o2
d

m
gr

id

ap
pl

u

tu
rb

3d

ap
si

fp
pp

p

w
av

e5

G
eo

m
ea

n

Figure 4: Simulator accuracy on SPECfp95*

ENABLING AN OPERATING SYSTEM
VENDOR
The first enabling Software Development Kit (SDK)
shipped in November 1997 to multiple Operating System
Vendors (OSVs). The goal of the SDK was to provide
OSVs with the tools necessary to port their Operating
Systems (OSs) to the Itanium architecture. The initial

 Itanium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 4

contents of the Enabling SDK were the compiler, the
assembler, and a functional simulator called Gambit.
These tools were all UNIX-based. But in September
1998, the simulator no longer supported the UNIX
platforms; it only supported Windows platforms. Every
one working on a port to the Itanium architecture had to
have a Windows-based system to be able to continue.
This was a hard sell to non-NT OSVs.

During the life of the Enabling SDK project (10/97 to
12/99), there were seven major releases, occurring
approximately once per quarter.

The Monterey Story
Although the Enabling SDK was provided to several
OSVs [3], Gemini64 (the Operating System provided by
SCO) was our reference platform. We held weekly
meetings to discuss status, progress, plans, and of course,
compiler bugs or needed features.

In October 1998, the compiler teams engagement with
IBM accelerated. IBM had already decided to port their
AIX* Operating System using the Intel compiler. At the
same time the announcement was made, SCO, IBM, and
Sequent decided to collaborate on their OS effort, and
they started the Monterey Operating System project.
This OS was designed to take advantage of strengths in
each code base.

Intel compilers had never before been used to port
operating systems, so the testing done in the compiler
group did not always catch problems seen while porting
the Monterey OS. We were working closely with the OS
team and providing them pre-release compilers to test the
kernel. After a few releases, the compiler team decided
to make the OS build a part of the compiler release
criteria.

The main challenge on the Enabling SDK Project was
that there were no constant factors:

• Aggressive performance-driven optimizations were
under development, making the compiler unstable at
times. A compiler simply meant for OSV-enabling
would have been more conservative in its
optimization work.

• The OS was also under constant change and
development.

• Development was underway on the simulator, where
the changes for new External Architecture
Specification (EAS) revisions were incorporated.

∗ Other names and brands may be claimed as the property
of others.

Because of all the changes, debugging was a challenge.

Testing the UNIX SDK was another challenge:

• There was no runtime environment available on
UNIX. We had written a minimal set of runtime
functions to interface with SoftSDV for our testing
purposes. Each OS vendor had a different runtime
environment.

• Our UNIX tool chain did not include a full-feature
linker. Again OSVs were using their linker, which
often behaved differently from what we were using.

• Not having a UNIX-based SoftSDV forced us to
change our testing tools to work across platforms.

In Q3 1999, the bring-up plan gave all OS vendors a two-
week period to bring up their OS on the Itanium
Hardware in Intel Dupont. Monterey was scheduled for
the week starting September 14. It took Monterey less
than 24 hours to bring up the kernel on SDVs. According
to IBM, this was the fastest they ever booted an OS.

The Monterey binary that booted on Itanium hardware
was built with the Electron Compiler with optimizations
enabled. No workarounds were required! This was quite
a success story for the compiler and SoftSDV.
[http://aix5l.ihost.com/innovations/index.shtml]

The presence of compilers for the porting effort along
with simulators and other tools (enabling SDK) are what
made the difference when hardware was available.

PRE-SILICON COMPILER TESTING AND
VALIDATION METHODOLOGY
The Intel Itanium compilers were tested in two different
environments to cover the C/C++ and Fortran compiler
language functionality and to test optimizations and code
generation, based on Itanium.

Testing Environments
Compiler testing was divided into two parts: Application-
Mode testing on the functional simulator Gambit, and
System Mode testing using SoftSDV on the Win64*
Operating System (OS).

∗ Other names and brands may be claimed as the property
of others.
 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
 Itanium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 5

Application-Mode Testing: Compiler language
conformance tests, coverage for optimizations using
C/C++, and Fortran compiler test suites were mostly done
in application mode. This resulted in fast turnaround on
test results and overnight test runs. However, application
mode testing was limited to basic runtime file I/O, and
memory management. It could not be used to exercise
the C/C++ language features, which required a complete
Operating System (OS) runtime environment. It also
could not test recovery code, since Gambit did not
simulate page faults.

SoftSDV-Testing and Debugging Environment: The
C/C++ functionality in the areas of structured exception
handling, C++ exception handling, runtime type
information, and C++ I/O required a complete OS
runtime support. SoftSDV was the only way to exercise
these C++ functionalities and the compiler and operating
system stack unwinding support. Unalign and NAT
exceptions specific to Itanium are handled by the OS, and
so the compiler-generated code for speculation can only
be tested with the OS. We relied on SoftSDV to have
comprehensive test coverage with the Itanium compilers.

Compiler tests running on a simulated Win64 operating
system had a slow turnaround time. This environment
enabled a SoftSDV cross-testing environment for the
compilers. Tests were compiled on the host system;
SoftSDV then booted the operating system on the
simulator and executed the compiler-generated
executable.

Debugging programs on SoftSDV was very challenging.
The debugger and OS were still in the development
phase. Moreover, the OS/debugger interface was not
very stable. Several times we ran into OS problems as we
debugged compiler issues. Compiler debug engineers had
to understand the interaction between the debugger and
the OS. They also had to learn the OS interface for
trapping the exceptions. The compiler functionalities,
which were the hardest to debug, were structured
exception handling and C++ exception handling.

A good example of this would be that we would set a
breakpoint to trap an exception raised by the an
exception-handling test case, and we would end up in the
OS exception dispatcher, having trouble in unwinding.
We would then enable OS breakpoints to debug the
unwinding problems, to uncover the compiler or OS stack
unwinding issues.

* Other names and brands may be claimed as the property
of others.

Netbatch Tools
To improve the test coverage for the compiler, a
networked batch-testing software was integrated with the
compiler test tool, widely known as Netbatch. With the
Netbatch compiler, testing was completed in 16 to 18
hours. Netbatch allowed regression testing to be run
nightly. This allowed fast turnaround on the bugs
introduced daily.

Configuration: The test tools were modified to use the
Netbatch APIs. The client systems known as Garcons
were set up with SoftSDV tools, a Win64 OS, and drivers.
The compiler-testing tool called TC, is written in Perl and
uses the Netbatch capability to distribute compiler tests
across all the machines in the Netbatch pool. TC works
in the SoftSDV environment and in application mode.

Challenges with changing OS and SoftSDV: OS
development was still in progress, and SoftSDV was
constantly being modified for additional support for new
drivers. Every upgrade for a new version of the OS and
SoftSDV required changes to be made to the testing
environment and testing tools, such as TC. We had to re-
install the new versions of SoftSDV, the OS, and related
tools on all Netbatch client systems before testing the
compiler in the new environment.

SDK Development and Test Cycle
Intel compiler and OS teams worked closely with
Microsoft, HP, and SCO to define Software Conventions
and Runtime Architecture for the Itanium architecture.
An NT Application Binary Interface (ABI) was defined to
support the Windows NT operating system features for
Itanium. We also defined a System V UNIX Processor-
specific ABI for the Itanium architecture. The
conventions, and OS ABI, formed a norm for the OS and
for tool development on NT and UNIX platforms. On the
NT platform, a complete Software Development Kit
(SDK) was being developed, see Figure 5. It included the
OS, SoftSDV, and the development tools: compilers, the
assembler, the linker, and OS runtime libraries

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 6

SDK
(Software Development Kit)

Windows 64 Operating System

SoftSDV

Compilers

Runtime Libraries

Install OS & drivers

Assembler
& scheduling library

Linker

Development Tools

Install SoftSDV & Tools

Figure 5: Software Development Kit

Microsoft worked with the Intel linker team to implement
the ABI support and extended their executable file format
to include 64-bit virtual addresses. The new file format
was defined as an extension to the existing PE32 and was
called PE32+. The compiler and assembler implemented
the support for the PE32+ and the NT ABI. For example,
support for function pointers known as “plabel,” unwind
tables, exception handling tables, and various 64-bit
relocations were added to the tools and to the OS
runtime. The SoftSDV included firmware and drivers,
which were compatible with the Windows NT ABI.
Figure 6 describes the dependencies within the SDK
components. These dependencies made it hard to
stabilize the SDK across engineering groups. All the OS
and compiler ABI compatibility issues were tested on the
simulator to be silicon ready. The pre-silicon releases
enabled porting applications to 64-bit, so they would be
ready to run on the Itanium hardware.

SDK Components

OS Runtime LibrariesAssembler
& scheduling library

Software convention and ABI dependencies

Compilers

Linker and OS Loader

Figure 6: Dependencies within SDK components

Compiler Language Extensions for the Itanium
Architecture
We defined extensions to the Windows NT C compiler to
support the Win64 ABI. Among them were the following:

• pragma data_seg to define data as short or long was
introduced in the Microsoft and Intel C compilers

• __ptr64 and __ptr32 to support 64-bit and 32-bit
pointer types

• several compiler intrinsics were implemented to
support the NT operating system functionality
requirements in place of inline assembly

SoftSDV was used to test the mixed 32-bit and 64-bit
pointer support by forcing programs to be loaded at higher
than 2**32 bit address.

CONCLUSION
Developing a compiler in a virtual environment presented
many challenges, but we were able to do everything that
we would have done on hardware: performance
projections, nightly regression testing, and Operating
System Vendor (OSV) and Independent Software Vendor
(ISV) enabling. Since the Intel Itanium processor was the
first of a new architecture, no other methodology was
possible, but it had a high cost in people to develop and
maintain all these complex tools. We also had to limit the
scope of performance analysis and stability testing to
accommodate the simulator speed. We have learned that
hardware is needed at least six months before the first
release of a compiler product in order to analyze the
performance and stability of real applications, and not
only benchmarks and test suites.

ACKNOWLEDGMENTS
We acknowledge the work of all members of the Intel
Compiler Lab. Special thanks to Tom Joyce, Bill Savage,
Suresh Rao, and Steve Skedzielewski for their thorough
reviews.

REFERENCES
[1] Carole Dulong, Rakesh Krishnaiyer, Dattatraya

Kulkarni, Daniel Lavery ,Wei Li, John Ng, and David
Sehr, “An Overview of the Intel IA-64 Compiler,”
Intel Technology Journal, Q4, 1999.

 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
 Itanium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q3, 2001

The Making of a Compiler for the Intel® Itanium™ Processor 7

[2] Richard Uhlig, Roman Fishtein, Oren Gershon, Israel
Hirsh, and Hong Wang, “SoftSDV: A Pre-silicon
Software Development Environment for the IA-64
Architecture,” Intel Technology Journal, Q4, 1999.

[3] Kathy Carver, Chuck Fleckenstein, Joshua LeVasseur,
and Stephan Zeisset “Porting Operating System
Kernels to the IA-64 Architecture for Pre-silicon
Validation Purposes,” Intel Technology Journal, Q4,
1999.

AUTHORS’ BIOGRAPHIES
Carole Dulong has been with Intel for over eleven years.
She is a principal engineer and staff member of the Intel
Compiler Lab. Prior to joining Intel’s Microcomputer
Software Laboratory, she was with the Itanium
architecture group, where she headed the Itanium
multimedia architecture definition and the Itanium
experimental compiler development. Her e-mail is
carole.dulong@intel.com

Priti Shrivastav joined Intel’s Itanium compiler code
generator group in September 1995. She moved on to the
Enabling SDK and Development Group as the technical
lead in 1996. For three years she was the Itanium
Compiler Evaluation team manager and now co-manages
the IA-32 and IPF Product Compiler team within the Intel
Compiler Lab. Priti received her Masters degree in
Computer Science from Ohio University in 1983. Her e-
mail is priti.shrivastav@intel.com.

Azita Refah has been with Intel for over eleven years.
She leads the Linux development team in the Intel
Compiler Lab. She graduated from Northeastern
University (in Boston) with a B.S. degree in Computer
Science. Her e-mail is azita.refah@intel.com

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

